Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 14(1): 1058, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2288034

ABSTRACT

SARS-CoV-2 Omicron variants feature highly mutated spike proteins with extraordinary abilities in evading antibodies isolated earlier in the pandemic. Investigation of memory B cells from patients primarily with breakthrough infections with the Delta variant enables isolation of a number of neutralizing antibodies cross-reactive to heterologous variants of concern (VOCs) including Omicron variants (BA.1-BA.4). Structural studies identify altered complementarity determining region (CDR) amino acids and highly unusual heavy chain CDR2 insertions respectively in two representative cross-neutralizing antibodies-YB9-258 and YB13-292. These features are putatively introduced by somatic hypermutation and they are heavily involved in epitope recognition to broaden neutralization breadth. Previously, insertions/deletions were rarely reported for antiviral antibodies except for those induced by HIV-1 chronic infections. These data provide molecular mechanisms for cross-neutralization of heterologous SARS-CoV-2 variants by antibodies isolated from Delta variant infected patients with implications for future vaccination strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
3.
Anal Biochem ; 654: 114803, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1935920

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) has significant impact on the entire human society. However, in the face of continually emerging more contagious SARS-CoV-2 variant, the risk to bog down into more severe crisis is around us anytime. Here, we introduce an isothermal, ultrasensitive method for identifying important SNV mutations of SARS-CoV-2. It is based on combined specificity of toehold-assisted linear probe ligation and in vitro transcription signal enlargement, TLT. A ready-to-use panel of TLT assay is developed including detection of 80 crucial SARS-CoV-2 SNVs, by which people could response to the next coming contagious virus variant more rapidly. These advanced point-of-care features make TLT one good approach for large scale population testing of special SARS-CoV-2 variants of interesting.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Genotype , Humans , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Nat Commun ; 13(1): 3979, 2022 07 09.
Article in English | MEDLINE | ID: covidwho-1927086

ABSTRACT

Despite timely immunization programs, and efficacious vaccines conveying protection against SARS-CoV-2 infection, breakthrough infections in vaccinated individuals have been reported. The Delta variant of concern (VOC) outbreak in Guangzhou resulted in local transmission in vaccinated and non-vaccinated residents, providing a unique opportunity to study the protective effects of the inactivated vaccines in breakthrough infection. Here, we find that the 2-dose vaccinated group has similar peak viral titers and comparable speeds of viral RNA clearance to the non-vaccinated group but accelerated viral suppression in the middle course of the disease. We quantitatively demonstrate that peak viral pneumonia is significantly mitigated in the 2-dose vaccine group (median 0.298%) compared with the non-vaccinated (5.77%) and 1-dose vaccine (3.34%) groups. Pneumonia absorbance is approximately 6 days ahead in the 2-dose group (median 10 days) than in the non-vaccinated group (16 days) (p = 0.003). We also observe reduced cytokine inflammation and markedly undisturbed gene transcription profiles of peripheral blood mononuclear cells (PBMCs) in the 2-dose group. In short, our study demonstrates that prior vaccination substantially restrains pneumonia development, reduces cytokine storms, and facilitates clinical recovery.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Vaccination
5.
Signal Transduct Target Ther ; 6(1): 427, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1795805

ABSTRACT

Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.


Subject(s)
COVID-19/blood , Hyperglycemia/blood , Insulin Resistance , Lipid Metabolism , Lipids/blood , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , COVID-19/complications , Female , Humans , Hyperglycemia/etiology , Male , Middle Aged , Retrospective Studies
6.
Int J Med Sci ; 19(2): 213-224, 2022.
Article in English | MEDLINE | ID: covidwho-1627517

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severely infects people and has rapidly spread worldwide. JingFangBaiDu San (JFBDS) has been used to treat prevalent epidemic pathogens, common cold, headache, cough due to lung-cold, and other symptoms; however, its treatment for COVID-19 is unknown. Molecular docking and network pharmacology were applied to obtain ingredient-protein structures and the herb-ingredient-disease target network model, respectively, to explore the potential mechanism of JFBDS in COVID-19 treatment. Network pharmacology analysis showed that acacetin, wogonin, and isorhamnetin were the main active ingredients of JFBDS, and EGFR, PIK3CA, LCK, MAPK1, MAPK3, MAPK8, STAT3, TNF, IL2, and RELA were speculated to be crucial therapeutic targets. Moreover, the Toll-like receptors, HIF-1, PIK3K/AKT, MAPK, NF-κB and NOD-like receptor signaling pathways were important for JFBDS in COVID-19 treatment. Molecular docking analysis indicated that ingredients of JFBDS could bind to angiotensin converting enzyme II, spike protein, and chymotrypsin like protease (3CLpro), which inhibits virus entry and replication in host cells. This study provides a new perspective for understanding potential therapeutic effects and mechanisms of JFBDS in COVID-19 and may facilitate its clinical application.


Subject(s)
COVID-19 Drug Treatment , Humans , Molecular Docking Simulation , Molecular Targeted Therapy , Network Pharmacology , Phytotherapy , Protein Interaction Maps
7.
Nat Commun ; 12(1): 4984, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361636

ABSTRACT

SARS-CoV-2 vaccination has been launched worldwide to build effective population-level immunity to curb the spread of this virus. The effectiveness and duration of protective immunity is a critical factor for public health. Here, we report the kinetics of the SARS-CoV-2 specific immune response in 204 individuals up to 1-year after recovery from COVID-19. RBD-IgG and full-length spike-IgG concentrations and serum neutralizing capacity decreases during the first 6-months, but is maintained stably up to 1-year after hospital discharge. Even individuals who had generated high IgG levels during early convalescent stages had IgG levels that had decreased to a similar level one year later. Notably, the RBD-IgG level positively correlates with serum neutralizing capacity, suggesting the representative role of RBD-IgG in predicting serum protection. Moreover, viral-specific cellular immune protection, including spike and nucleoprotein specific, persisted between 6 months and 12 months. Altogether, our study supports the persistence of viral-specific protective immunity over 1 year.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL